Universal canonical black hole entropy.
نویسندگان
چکیده
Nonrotating black holes in three and four dimensions are shown to possess a canonical entropy obeying the Bekenstein-Hawking area law together with a leading correction (for large horizon areas) given by the logarithm of the area with a universal finite negative coefficient, provided one assumes that the quantum black hole mass spectrum has a power-law relation with the quantum area spectrum found in nonperturbative canonical quantum general relativity. The thermal instability associated with asymptotically flat black holes appears in the appropriate domain for the index characterizing this power-law relation, where the canonical entropy (free energy) is seen to turn complex.
منابع مشابه
The phase transition of corrected black hole with f(R) gravity
In this letter, we consider static black hole in f(R) gravity.We take advantage from corrected entropy and temperature and investigate such black hole. Finally, we study the $ P - V $ critically and phase transition of corrected black hole with respect to entropy and temperature. Here also, we obtain the heat capacity for the static black hole in $ f(R) $ gravity. This calculation help us...
متن کامل- qc / 0 60 81 23 v 1 2 9 A ug 2 00 6 Canonical Entropy of charged black hole
Abtract Recently, Hawking radiation of the black hole has been studied by using the tunnel effect method. It is found that the radiation spectrum of the black hole is not a strictly pure thermal spectrum. How does the departure from pure thermal spectrum affect the entropy? This is a very interesting problem. In this paper, we calculate the partition function through energy spectrum obtained by...
متن کاملSimple Harmonic Oscillator Canonical Ensemble Model for Tunneling Radiation of Black Hole
A simple harmonic oscillator canonical ensemble model for Schwarzchild black hole quantum tunneling radiation is proposed in this paper. Firstly, the equivalence between canonical ensemble model and Parikh–Wilczek’s tunneling method is introduced. Then, radiated massless particles are considered as a collection of simple harmonic oscillators. Based on this model, we treat the black hole as a he...
متن کاملCanonical Quantization and the Statistical Entropy of the Schwarzschild Black Hole
The canonical quantization of a Schwarzschild black hole yields a picture of the black hole that is shown to be equivalent to a collection of oscillators whose density of levels is commensurate with that of the statistical bootstrap model. Energy eigenstates of definite parity exhibit the Bekenstein mass spectrum, M ∼ √ NMp, where N ∈ N. From the microcanonical ensemble, we derive the statistic...
متن کاملar X iv : g r - qc / 9 90 30 10 v 1 2 M ar 1 99 9 Universal Upper Bound to the Entropy of a Charged System
We derive a universal upper bound to the entropy of a charged system. The entropy bound follows from application of the generalized second law of thermodynamics to a gedanken experiment in which an entropy-bearing charged system falls into a charged black hole. This bound is stronger than the Bekenstein entropy bound for neutral systems. Black-hole physics mirrors thermodynamics in many respect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 92 14 شماره
صفحات -
تاریخ انتشار 2004